The respiratory chain in yeast behaves as a single functional unit.
نویسندگان
چکیده
Inhibitor titrations using antimycin have been used to study the pool behavior of ubiquinone and cytochrome c in the respiratory chain of the yeast Saccharomyces cerevisiae. If present in a homogeneous pool, these carriers should be able to diffuse freely through or along the membrane respectively and accept and subsequently donate electrons to an infinite number of the respective respiratory complex. However, we show that under physiological conditions neither ubiquinone nor cytochrome c exhibits pool behavior, implying that the respiratory chain in yeast is one functional unit. Pool behavior can be introduced for both small carriers by adding chaotropic agents to the reaction medium. We conclude that these agents disrupt the interaction between the respiratory complexes, thereby causing them to become randomly arranged in the membrane. In such a situation, ubiquinone and cytochrome c become mobile carriers, shuttling between the large respiratory complexes. Furthermore, we conclude from the respiratory activities found for different substrates that the respiratory units in yeast vary in composition with respect to the ubiquinone reducing enzyme. All units contain the cytochrome chain, supplemented with either succinate dehydrogenase or the internal or the external NADH dehydrogenase. This implies that when only one substrate is available, only a certain fraction of the cytochrome chain is used in respiration. The molecular organization of the respiratory chain in yeast is compared with that of higher eukaryotes and to the electron transfer systems of photosynthetic membranes. Differences between the organization of the respiratory chain of yeast and that of higher eukaryotes are discussed in terms of the ability of yeast to radically alter its metabolism in response to change of the available carbon source.
منابع مشابه
Structural-functional studies of peptides derived from a long-chain snake neurotoxin Naja naja oxiana
Introduction: The design and structural characterization of mini-proteins with a compact, folded structure provide insight into the complex architecture of proteins today and has long been a challenging issue in structural- functional studies. Alpha neurotoxins from snake venom have a distinct folded structure comprised of a disulphide core and three loops or “fingers” each of these loops are c...
متن کاملLong-term, high-dose aspirin therapy increases the specific activity of complex III of mitochondrial respiratory chain in the kidney of diabetic rats
Introduction: One of the main mechanisms by which diabetic complications occur is an alteration of the structure and function of proteins due to hyperglycemia. Aspirin (ASA) affects cellular pathways through different mechanisms, including glycation inhibition and antioxidant activity. The aim of the present study, as a follow up to our previous one, is to investigate the effect of long-term, h...
متن کاملFunctional investigation of the BRCA1 Val1714Gly and Asp1733Gly variants by computational tools and yeast transcription activation assay
Mutations in the BRCA1 gene are known to be a major cause of hereditary breast cancer. However, characterizing the point mutationsassociated with cancer in BRCA1 is challenging because the functional impact of most of them is still unknown. Nowadays, a variety of methods are employed to identify cancer-associated mutations in BRCA1. This study is aimed to ass...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 9 شماره
صفحات -
تاریخ انتشار 1998